Исполнительные функции в раннем детстве

Обзор иностранных источников

Авторы

  • Елена Ивановна Николаева Российский государственный педагогический университет им. А. И. Герцена; Елецкий государственный университет им. И. А. Бунина https://orcid.org/0000-0001-8363-8496

DOI:

https://doi.org/10.33910/2687-0223-2019-1-4-330-337

Ключевые слова:

исполнительные функции

Библиографические ссылки

Alcauter, S., Lin, W., Smith, J. K. et al. (2014) Development of thalamocortical connectivity during infancy and its cognitive correlations. Journal of Neuroscience, vol. 34, no. 27, pp. 9067–9075. DOI: 10.1523/JNEUROSCI.0796-14.2014 (In English)

Anderson, P. J., Reidy, N. (2012) Assessing executive function in preschoolers. Neuropsychology Review, vol. 22, no. 4, pp. 345–360. DOI: 10.1007/s11065-012-9220-3 (In English)

Aron, A. R., Robbins, T. W., Poldrack, R. A. (2014) Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, vol. 18, no. 4, pp. 177–185. DOI: 10.1016/j.tics.2013.12.003 (In English)

Baird, A. A., Kagan, J., Gaudette, T. et al. (2002) Frontal lobe activation during object permanence: Data from near-infrared spectroscopy. NeuroImage, vol. 16, no. 4, pp. 1120–1126. DOI: 10.1006/nimg.2002.1170 (In English)

Blair, C., Razza, R. P. (2007) Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, vol. 78, no. 2, pp. 647–663. DOI: 10.1111/j.1467-8624.2007.01019.x (In English)

Bathelt, J., Gathercole, S. E., Butterfield, S., Astle, D. E. (2017) The role of the structural connectome in literacy and numeracy development in children. [Online]. Available at: https://psyarxiv.com/jk6yb/ (accessed 12.10.2019) (In English)

Bathelt, J., Gathercole, S. E., Butterfield, S. et al. (2018) Children’s academic attainment is linked to the global organization of the white matter connectome. Developmental Science, vol. 21 (5), article e12662. DOI: 10.1111/ desc.12662 (In English)

Bauer, P. J., Zelazo, P. D. (2014) The national institutes of health toolbox for the assessment of neurological and behavioral function: A tool for developmental science. Child Development Perspectives, vol. 8, pp. 119–124. DOI: 10.1111/cdep.12080 (In English)

Bell, M. A. (2012) A psychobiological perspective on working memory performance at 8 months of age. Child Development, vol. 83, no. 1, pp. 251–265. DOI: 10.1111/j.1467-8624.2011.01684.x (In English)

Best, J. R., Miller, P. H. (2010) A developmental perspective on executive function. Child Development, vol. 81, no. 6, pp. 1641–1660. DOI: 10.1111/j.1467-8624.2010.01499.x (In English)

Brydges, C. R., Fox, A. M., Reid, C. L., Anderson, M. (2014) The differentiation of executive functions in middle and late childhood: A longitudinal latent-variable analysis. Intelligence, vol. 47, pp. 34–43. DOI: 10.1016/j. intell.2014.08.010 (In English)

Casey, B. J., Galvan, A., Hare, T. A. (2005) Changes in cerebral functional organization during cognitive development. Current Opinion in Neurobiology, vol. 15, no. 2, pp. 239–244. DOI: 10.1016/j.conb.2005.03.012 (In English)

Chugani, H. T., Phelps, M. E., Mazziotta, J. C. (1987) Positron emission tomography study of human brain functional development. Annals of Neurology, vol. 22, no. 4, pp. 487–497. DOI: 10.1002/ana.410220408 (In English)

Courage, M. L., Reynolds, G. D., Richards, J. E. (2006) Infants’ attention to patterned stimuli: Developmental change from 3 to 12 months of age. Child Development, vol. 77, no. 3, pp. 680–695. DOI: 10.1111/j.1467-8624.2006.00897.x (In English)

Crone, E. A., Wendelken, C., Donohue, S. et al. (2006) Neurocognitive development of the ability to manipulate information in working memory. Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 24, pp. 9315–9320. DOI: 10.1073/pnas.0510088103 (In English)

Deoni, S. C. L., Mercure, E., Blasi, A. et al. (2011) Mapping infant brain myelination with magnetic resonance imaging. Journal of Neuroscience, vol. 31, no. 2, pp. 784–791. DOI: 10.1523/JNEUROSCI.2106-10.2011 (In English)

Diamond, A. (2002) Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. In: D. T. Stuss, R. Knight (eds.). Principles of frontal lobe function. New York: Oxford University Press, pp. 466–503. (In English)

Diamond, A. (2013) Executive functions. Annual Review of Psychology, vol. 64, pp. 135–168. DOI: 10.1146/annurev-psych-113011-143750 (In English)

Diamond, A., Barnett, W. S., Thomas, J., Munro, S. (2007) Preschool program improves cognitive control. Science, vol. 318, no. 5855, pp. 1387–1388. DOI: 10.1126/science.1151148 (In English)

Durston, S., Davidson, M. C., Tottenham, N. et al. (2006) A shift from diffuse to focal cortical activity with development. Developmental Science, vol. 9, no. 1, pp. 1–8. DOI: 10.1111/j.1467-7687.2005.00454.x (In English)

Eisenberg, N., Valiente, C., Spinrad, T. L. et al. (2009) Longitudinal relations of children’s effortful control, impulsivity, and negative emotionality to their externalizing, internalizing, and co-occurring behavior problems. Developmental Psychology, vol. 45, no. 4, pp. 988–1008. DOI: 10.1037/a0016213 (In English)

Fiske, A., Holmboe, K. (2019) Neural substrates of early executive function development. Developmental Review, vol. 52, pp. 42–62. DOI: 10.1016/j.dr.2019.100866 (In English)

Franceschini, M. A., Thaker, S., Themelis, G. et al. (2007) Assessment of infant brain development with frequency-domain near-infrared spectroscopy. Pediatric Research, vol. 61, no. 5, pp. 546–551. DOI: 10.1203/pdr.0b013e318045be99 (In English)

Friedman, N. P., Miyake, A., Robinson, J. L., Hewitt, J. K. (2011) Developmental trajectories in toddlers’ self-restraint predict individual differences in executive functions 14 years later: A behavioral genetic analysis. Developmental Psychology, vol. 47, no. 5, pp. 1410–1430. DOI: 10.1037/a0023750 (In English)

Friedman, N. P., Miyake, A. (2017) Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, vol. 86, pp. 186–204. DOI: 10.1016/j.cortex.2016.04.023 (In English)

Garon, N., Bryson, S. E., Smith, I. M. (2008) Executive function in preschoolers: A review using an integrative framework. Psychological Bulletin, vol. 134, no. 1, pp. 31–60. DOI: 10.1037/0033-2909.134.1.31 (In English)

Garon, N., Smith, I. M., Bryson, S. E. (2014) A novel executive function battery for preschoolers: Sensitivity to age differences. Child Neuropsychology, vol. 20, no. 6, pp. 713–736. DOI: 10.1080/09297049.2013.857650 (In English)

Ghassabian, A., Herba, C. M., Roza, S. J. et al. (2013) Infant brain structures, executive function, and attention deficit/hyperactivity problems at preschool age. A prospective study. The Journal of Child Psychology and Psychiatry, vol. 54, no. 1, pp. 96–104. DOI: 10.1111/j.1469-7610.2012.02590.x (In English)

Glantz, L. A., Gilmore, J. H., Hamer, R. M. et al. (2007) Synaptophysin and postsynaptic density protein 95 in the human prefrontal cortex from mid-gestation into early adulthood. Neuroscience, vol. 149, no. 3, pp. 582–591. DOI: 10.1016/j.neuroscience.2007.06.036 (In English)

Gogtay, N., Giedd, J. N., Lusk, L. et al. (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 21, pp. 8174–8179. DOI: 10.1073/pnas.0402680101 (In English)

Hendry, A., Jones, E. J. H., Charman, T. (2016) Executive function in the first three years of life: Precursors, predictors and patterns. Developmental Review, vol. 42, pp. 1–33. DOI: 10.1016/j.dr.2016.06.005 (In English)

Holmboe, K., Bonneville-Roussy, A., Csibra, G., Johnson, M. H. (2018) Longitudinal development of attention and inhibitory control during the first year of life. Developmental Science, vol. 21, no. 6, article e12690. DOI: 10.1111/ desc.12690 (In English)

Hongwanishkul, D., Happaney, K. R., Lee, W. S. C., Zelazo, P. D. (2005) Assessment of hot and cool executive function in young children: Age-related changes and individual differences. Developmental Neuropsychology, vol. 28, no. 2, pp. 617–644. DOI: 10.1207/s15326942dn2802_4 (In English)

Huttenlocher, P. R., Dabholkar, A. S. (1997) Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, vol. 387, no. 2, pp. 167–178. DOI: 10.1002/(SICI)1096- 9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z (In English)

Jacobsen, C. F. (1935) Functions of the frontal association area in primates. Archives of Neurology & Psychiatry, vol. 33, no. 3, pp. 558–569. DOI: 10.1001/archneurpsyc.1935.02250150108009 (In English)

Kanemura, H., Aihara, M., Aoki, S. et al. (2003) Development of the prefrontal lobe in infants and children: A three-dimensional magnetic resonance volumetric study. Brain & Development, vol. 25, no. 3, pp. 195–199. DOI: 10.1016/S0387-7604(02)00214-0 (In English)

Kinney, H. C., Brody, B. A., Kloman, A. S., Gilles, F. H. (1988) Sequence of central nervous system myelination in human infancy: II. Patterns of myelination in autopsied infants. Journal of Neuropathology & Experimental Neurology, vol. 47, no. 3, pp. 217–234. DOI: 10.1097/00005072-198805000-00003 (In English)

Koenderink, M. J. Th., Uylings, H. B. M., Mrzljak, L. (1994) Postnatal maturation of the layer III pyramidal neurons in the human prefrontal cortex: A quantitative Golgi analysis. Brain Research, vol. 653, no. 1–2, pp. 173–182. DOI: 10.1016/0006-8993(94)90387-5 (In English)

Luna, B., Marek, S., Larsen, B. et al. (2015) An integrative model of the maturation of cognitive control. Annual Review of Neuroscience, vol. 38, pp. 151–170. DOI: 10.1146/annurev-neuro-071714-034054 (In English)

Luria, A. R. (1961) The role of speech in the regulation of normal and abnormal behavior. New York: Liveright Publishing Corporation, 148 p. (In English)

McKenna, R., Rushe, T., Woodcock, K. A. (2017) Informing the structure of executive function in children: A meta-analysis of functional neuroimaging data. Frontiers in Human Neuroscience, vol. 11, article 154 DOI: 10.3389/fnhum.2017.00154 (In English)

Mehnert, J., Akhrif, A., Telkemeyer, S. et al. (2013) Developmental changes in brain activation and functional connectivity during response inhibition in the early childhood brain. Brain & Development, vol. 35, no. 10, pp. 894–904. DOI: 10.1016/j.braindev.2012.11.006 (In English)

Miyake, A., Friedman, N. P. (2012) The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, vol. 21, no. 1, pp. 8–14. DOI: 10.1177/0963721411429458 (In English)

Moriguchi, Y., Shinohara, I. (2019) Less is more activation: The involvement of the lateral prefrontal regions in a “less is more” task. Developmental Neuropsychology, vol. 44, no. 3, pp. 273–281. DOI: 10.1080/87565641.2019.1608549 (In English)

Nikolaeva, E. I. (2015) Alexander Luria: Creator in the perspective of time. In: M. Nadin (ed.). Anticipation: Learning from the past. Cham: Springer, pp. 457–468. (Cognitive Systems Monographs. Vol. 25). DOI: 10.1007/978-3- 319-19446-2_27 (In English)

Noël, X., Brevers, D., Bechara, A. (2013) A neurocognitive approach to understanding the neurobiology of addiction. Current Opinion in Neurobiology, vol. 23, no. 4, pp. 632–638. DOI: 10.1016/j.conb.2013.01.018 (In English)

Paredes, M. F., James, D., Gil-Perotin, S. et al. (2016) Extensive migration of young neurons into the infant human frontal lobe. Science, vol. 354, no. 6308, article aaf7073. DOI: 10.1126/science.aaf7073 (In English)

Perlman, S. B., Huppert, T. J., Luna, B. (2016) Functional near-infrared spectroscopy evidence for development of prefrontal engagement in working memory in early through middle childhood. Cerebral Cortex, vol. 26, no. 6, pp. 2790–2799. DOI: 10.1093/cercor/bhv139 (In English)

Peterson, E., Welsh, M. C. (2014) The development of hot and cool executive functions in childhood and adolescence: Are we getting warmer? In: S. Goldstein, J. A. Naglieri (eds.). Handbook of executive functioning. New York: Springer, pp. 45–65. DOI: 10.1007/978-1-4614-8106-5_4 (In English)

Piaget, J. (1954) The construction of reality in the child. New York: Basic books, XIII, 386 p.

Rommelse, N. N. J., Geurts, H. M., Franke, B. et al. (2011) A review on cognitive and brain endophenotypes that may be common in autism spectrum disorder and attention-deficit/hyperactivity disorder and facilitate the search for pleiotropic genes. Neuroscience & Biobehavioral Reviews, vol. 35, no. 6, pp. 1363–1396. DOI: 10.1016/j.neubiorev.2011.02.015 (In English)

Rubia, K., Smith, A. B., Taylor, E., Brammer, M. (2007) Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Human Brain Mapping, vol. 28, no. 11, pp. 1163–1177. DOI: 10.1002/hbm.20347 (In English)

Sanai, N., Nguyen, T., Ihrie, R. A. et al. (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature, vol. 478, no. 7369, pp. 382–386. DOI: 10.1038/nature10487 (In English)

Shaw, P., Kabani, N. J., Lerch, J. P. et al. (2008) Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, vol. 28, no. 14, pp. 3586–3594. DOI: 10.1523/JNEUROSCI.5309-07.2008 (In English)

Smith, E., Anderson, A., Thurm, A. et al. (2017) Prefrontal activation during executive tasks emerges over early childhood: Evidence from functional near infrared spectroscopy. Developmental Neuropsychology, vol. 42, no. 4, pp. 253–264. DOI: 10.1080/87565641.2017.1318391 (In English)

Tamnes, C. K., Østby, Y., Walhovd, K. B. et al. (2010) Neuroanatomical correlates of executive functions in children and adolescents: A magnetic resonance imaging (MRI) study of cortical thickness. Neuropsychologia, vol. 48, no. 9, pp. 2496–2508. DOI: 10.1016/j.neuropsychologia.2010.04.024 (In English)

Tamnes, C. K., Walhovd, K. B., Grydeland, H. et al. (2013) Longitudinal working memory development is related to structural maturation of frontal and parietal cortices. Journal of Cognitive Neuroscience, vol. 25, no. 10, pp. 1611–1623. DOI: 10.1162/jocn_a_00434 (In English)

van den Wildenberg, W. P. M., van der Molen, M. W. (2004) Developmental trends in simple and selective inhibition of compatible and incompatible responses. Journal of Experimental Child Psychology, vol. 87, no. 3, pp. 201–220. DOI: 10.1016/j.jecp.2003.11.003 (In English)

Wilcox, T., Biondi, M. (2016) Functional activation in the ventral object processing pathway during the first year. Frontiers in Systems Neuroscience, vol. 9, article 180. DOI: 10.3389/fnsys.2015.00180 (In English)

Ullman, H., Almeida, R., Klingberg, T. (2014) Structural maturation and brain activity predict future working memory capacity during childhood development. Journal of Neuroscience, vol. 34, no. 5, pp. 1592–1598. DOI: 10.1523/JNEUROSCI.0842-13.2014 (In English)

Woodward, L. J., Clark, C. A. C., Pritchard, V. E. et al. (2011) Neonatal white matter abnormalities predict global executive function impairment in children born very preterm. Developmental Neuropsychology, vol. 36, no. 1, pp. 22–41. DOI: 10.1080/87565641.2011.540530 (In English)

Zelazo, P. D. (2015) Executive function: Reflection, iterative reprocessing, complexity, and the developing brain. Developmental Review, vol. 38, pp. 55–68. DOI: 10.1016/j.dr.2015.07.001 (In English)

Zelazo, P. D., Carlson, S. M. (2012) Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives, vol. 6, no. 4, pp. 354–360. DOI: 10.1111/j.1750-8606.2012.00246.x (In English)

Загрузки

Опубликован

2019-12-20

Выпуск

Раздел

Новости научной жизни